Strain Energy Effects in the Spinodal Decomposition of Cu-Ni(Fe) Nanolaminate Coatings
نویسنده
چکیده
A model for spinodal decomposition must account for interface effects that include gradient and strain energy terms. The measurement of diffusion in the Cu-Ni(Fe) alloy for the special case of nanolaminate structured coatings is considered wherein the composition fluctuation is one-dimensional along <111>. An analytic approach is taken to model the kinetics of the transformation process that provides quantification of the strain energy dependence on the composition wavelength, as well as the intrinsic diffusivities and higher-order gradient-energy coefficients. The variation of the wave amplification factor R with wavenumber is modeled first to incorporate the boundary condition for growth at infinite wavelength. These results are used next to determine the gradient energy coefficients Kμ by modeling the interdiffusion coefficient ĎB variation with wavenumber, where a unique determination of the diffusion coefficient Ď is made. The value of the strain energy component that originates from interface strains associated with the epitaxial growth between layers is then determined by assessing the variation of wavelength-dependent amplification factors. A peak value of 9.4 × 107 J·m−3 for the strain energy is computed for Cu-Ni(Fe) nanolaminate coatings with 2–4 nm composition wavelengths.
منابع مشابه
TEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment
Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM) characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to ...
متن کاملMicrostructure and Antiwear Property of Laser Cladding Ni–Co Duplex Coating on Copper
Ni-Co duplex coatings were cladded onto Cu to improve the antiwear properties of Cu products. Prior to laser cladding, n-Al₂O₃/Ni layers were introduced as interlayers between laser cladding coatings and Cu substrates to improve the laser absorptivity of these substrates and ensure defect-free laser cladding coatings. The structure and morphology of the coatings were characterized by scanning e...
متن کاملMorphological and physical study of Cu-Ni sintered porous wicks used in heat pipes and fuel cells
Recently, the use of renewable energies has increased to environmental pollution, limitation of fossil energy resources and energy security One of the means that enable us to use such energies is fuel cells (FC). However, there are many problems in the commercialization of FC from an economically and operation perspective. One of the most important problems is heat management. New heat pipes...
متن کاملComparison of Binary and Ternary Compositions of Ni-Co-Cu Oxides/VACNTs Electrodes for Energy Storage Devices with Excellent Capacitive Behaviour
Electrochemical performance of binary and ternary oxides composed of Ni, Co and Cu produced over a 3-dimensional substrate of vertically aligned carbon nano-tubes (VACNT) as electrodes for aqueous energy sources, is reported and compared in this paper. VACNTs were fabricated inside a DC-plasma enhanced chemical vapor deposition chamber and composite materials fabricated by thermal decomp...
متن کاملSANS study of phase decomposition in Fe-Cu alloy added by Ni and Mn
Small-angle neutron scattering ( SANS ) measurements were mainly carried out in order to investigate the structure change during early stage of phase decomposition in Fe-Cu-Ni-Mn quaternary alloy. The fact that the nuclear Guinier radius becomes larger than the magnetic one beyond about 2 nm is attributed to the formation of segregated layer enriched by Ni and Mn around fcc copper-rich precipit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015